AlphaGo for RLers

mooopan

Go as an RL problem

. The complete environment model is available

. state transition function s’ = f(s,a)

- reward function r(s,a) =0, 1 or -1

- terminal condition

- we can self-play as many times as time allows

- wWe can use lookahead search as long as time allows

- The opponent model is not available, but we can assume each
player tries to maximize his or her return

Models in AlphaGo

Rollout policy SL policy network RL policy network Value network

P by 4 P o P p Vo

%3
\

Human expert positions Self-play positions

}JOM}BU [BINSN

eled

SL policy network

- p_o0 (s,a)

- Maximize the log-likelihood of human moves

a ~— Ologpy(a”|s")
Ao =2
d kz::l Oo

- p_o Is computed by a softmax layer (Gibbs policy)
- 30M positions from KGS

- Rollout policy p_m Is trained In a similar way with a
different dataset

RL policy network

- p_po (o is initialized with o)

- Maximize the expected return by Willlams’ REINFORCE

LL mogp” (ls) i (s

1=1 t=1
- V(S) Is a baseline, added to reduce the variance of

policy gradient estimation

- zero In the first pass, v_0 In the second pass

- Opponents are randomly sampled from old parameters

Value network

- v 6

- Training a value network = policy evaluation e.g. TD(A)

- Given a policy p_p, compute v*p_p}(s) = expected return from s

- Assume both players follow p_p

- We can use Monte-Carlo estimation by repeating simply following p_po and
observing a return

- They observed that training on every position in a game lead to
overfitting because they are strongly correlated

- S0, they created a new dataset by sampling only one state from each
game

Dataset creation

- Repeat 30M times:

. Start from an empty board s_1

- Followp o ats 1,--, s {U-1}, U~ unif(1,450)

. Select a move uniformly at random at s U

- From s_{U+1}, follow p_p till the end and we can observe a returnr
. Add (s_{U+1}, r) to the dataset

- Now we have 30M i.i.d. datasets for training a value function by
minimizing squared errors

84 i U Sk
Ao = S50 (6 gl 2L

k=1

Why not TD learning?

- They don't mention it

- Monte-Carlo estimation (=1D(1)) has no bias
but high variance

- TD learning (=TD(A) with A<1) has low
variance but some bias

- Maybe they found this bias problematic

Why not Actor-Critic?

- They don't mention It either (

- Actor-Critic can simultaneously learn p(als)
and v(s), v(s) helping training of p(als)

- Is 1t partly because v(s) is difficult to learn
compared to p(als)?

Monte-Carlo Tree Search

/—v Selection — Expansion — Simulation —> Backpropagation \

B A g5 4

Tree Default
Policy Policy

\/

- a J

- Nodes and/or edges In a search tree hold statistics about how good they are

. Statistics are updated by backpropagating returns of simulations, so-called
rollouts

- The search tree grows so that it can search promising portion of the state space
more deeply

APV-MCTS

- APV stands for asynchronous policy and value

- Each node in a search tree contains edges (s,a) for all legal actions
- Each edge stores a set of statistics

- P(s,a): prior probability (<- p_o (s,a))

- N_v(s,a): number of calls of v_6 below this edge

- W_v(s,a): sum of returns of v_06 below this edge

- N_r(s,a): number of rollouts below this edge

- W_r(s,a): sum of returns of rollouts below this edge

- Q(s,a): Q(S,Cl) — (1 B >\) I]/[\;:((j;b))

Selection

- Descend from root to leaf following: ‘f‘ ﬁ
argmaXaQ(s, a) + U(S, a) Q + u(P) Knax

- :ﬁ'ﬁ:t

¥/ 2 Nr(5,0) and

— ucP7
u(s,a) = cpuct P (S, a) 1—|—N(2

- Assign virtual loss n_vl to the statistics of selected edges so that they are not
favored in other threads’ selection phases

- N r(s,a) +=n_vl, W r(s,a) -= n_vl

- Similar but different from UCT, which is guaranteed to converge to optimal

values \/log Zb NT(S7 a)
N, (s,a)

uuct(sa a) — Cuct

CXpansion ;.

OO¢ 1D$4
p(,(?) T
N\

- If a leaf edge’s N _r(s,a) exceeds a certain threshold, add a
new node

- N_r, W_r, N_v, W_v of its edges are all initialized with O
- P(s,a) is initialized with outputs of SL policy network p_o

. They SL works better than RL here

@
‘}.

Evaluation .,

- If the leaf node’s position s L is not yet
evaluated by v_6, added to a queue so that it
will be evaluated by v_6 asynchronously

- Simulate from s_L following p_m and observe
areturnr

. N,
i) ¢
/
- Update the statistics from leaf to root: %1
|
- N_r(s,a) +=1 .31 ﬁ

- W r(s,a) +=r

- If evaluation of v_6 Is complete then another backup starts
asynchronously

- N _v(s,a) += 1

- Wr(s,a) +=v_6 (s L)

AlphaGo Is strong

- As you know

- SOTA

. Beat Lee Sedol 4-1

L essons

- Don’t fear high variance (if you have massive
computation resources)

- REINFORCE can scale surprisingly well

- Using every state In an episode for training
can lead to overfitting

. We still need lookahead search

