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Go as an RL problem
• The complete environment model is available 

• state transition function s’ = f(s,a) 

• reward function r(s,a) = 0, 1 or -1 

• terminal condition 

• we can self-play as many times as time allows 

• we can use lookahead search as long as time allows 

• The opponent model is not available, but we can assume each 
player tries to maximize his or her return



Models in AlphaGo



SL policy network
• p_σ(s,a) 

• Maximize the log-likelihood of human moves 

• p_σ is computed by a softmax layer (Gibbs policy) 

• 30M positions from KGS 

• Rollout policy p_π is trained in a similar way with a 
different dataset
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RL policy network
• p_ρ (ρ is initialized with σ) 

• Maximize the expected return by Williams’ REINFORCE 

• v(s) is a baseline, added to reduce the variance of 
policy gradient estimation 

• zero in the first pass, v_θ in the second pass 

• Opponents are randomly sampled from old parameters
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Value network
• v_θ 

• Training a value network = policy evaluation e.g. TD(λ) 

• Given a policy p_ρ, compute v^{p_ρ}(s) = expected return from s 

• Assume both players follow p_ρ 

• We can use Monte-Carlo estimation by repeating simply following p_ρ and 
observing a return 

• They observed that training on every position in a game lead to 
overfitting because they are strongly correlated 

• So, they created a new dataset by sampling only one state from each 
game



Dataset creation
• Repeat 30M times: 

• Start from an empty board s_1 

• Follow p_σ at s_1,…, s_{U-1}, U ~ unif(1,450) 

• Select a move uniformly at random at s_U 

• From s_{U+1}, follow p_ρ till the end and we can observe a return r 

• Add (s_{U+1}, r) to the dataset 

• Now we have 30M i.i.d. datasets for training a value function by  
minimizing squared errors 
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Why not TD learning?
• They don’t mention it 

• Monte-Carlo estimation (=TD(1)) has no bias 
but high variance 

• TD learning (=TD(λ) with λ<1) has low 
variance but some bias 

• Maybe they found this bias problematic



Why not Actor-Critic?

• They don’t mention it either :( 

• Actor-Critic can simultaneously learn p(a|s) 
and v(s), v(s) helping training of p(a|s) 

• Is it partly because v(s) is difficult to learn 
compared to p(a|s)?



Monte-Carlo Tree Search

• Nodes and/or edges in a search tree hold statistics about how good they are 

• Statistics are updated by backpropagating returns of simulations, so-called 
rollouts 

• The search tree grows so that it can search promising portion of the state space 
more deeply



APV-MCTS
• APV stands for asynchronous policy and value 

• Each node in a search tree contains edges (s,a) for all legal actions 

• Each edge stores a set of statistics 

• P(s,a): prior probability (<- p_σ(s,a)) 

• N_v(s,a): number of calls of v_θ below this edge 

• W_v(s,a): sum of returns of v_θ below this edge 

• N_r(s,a): number of rollouts below this edge 

• W_r(s,a): sum of returns of rollouts below this edge 

• Q(s,a): Q(s, a) = (1� �)
Wv(s, a)

Nv(s, a)
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Selection
• Descend from root to leaf following: 

• Assign virtual loss n_vl to the statistics of selected edges so that they are not 
favored in other threads’ selection phases  

• N_r(s,a) += n_vl, W_r(s,a) -= n_vl 

• Similar but different from UCT, which is guaranteed to converge to optimal 
values 
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Expansion

• If a leaf edge’s N_r(s,a) exceeds a certain threshold, add a 
new node 

• N_r, W_r, N_v, W_v of its edges are all initialized with 0 

• P(s,a) is initialized with outputs of SL policy network p_σ 

• They SL works better than RL here



Evaluation

• If the leaf node’s position s_L is not yet 
evaluated by v_θ, added to a queue so that it 
will be evaluated by v_θ asynchronously 

• Simulate from s_L following p_π and observe 
a return r



Backup
• Update the statistics from leaf to root: 

• N_r(s,a) += 1 

• W_r(s,a) += r 

• If evaluation of v_θ is complete then another backup starts 
asynchronously 

• N_v(s,a) += 1 

• W_r(s,a) += v_θ(s_L) 



AlphaGo is strong

• As you know 

• SOTA 

• Beat Lee Sedol 4-1



Lessons
• Don’t fear high variance (if you have massive 
computation resources) 

• REINFORCE can scale surprisingly well 

• Using every state in an episode for training 
can lead to overfitting 

• We still need lookahead search


