
AlphaGo for RLers
mooopan

Go as an RL problem
• The complete environment model is available

• state transition function s’ = f(s,a)

• reward function r(s,a) = 0, 1 or -1

• terminal condition

• we can self-play as many times as time allows

• we can use lookahead search as long as time allows

• The opponent model is not available, but we can assume each
player tries to maximize his or her return

Models in AlphaGo

SL policy network
• p_σ(s,a)

• Maximize the log-likelihood of human moves

• p_σ is computed by a softmax layer (Gibbs policy)

• 30M positions from KGS

• Rollout policy p_π is trained in a similar way with a
different dataset

�� =

↵

m

mX

k=1

@logp�(ak|sk)
@�

RL policy network
• p_ρ (ρ is initialized with σ)

• Maximize the expected return by Williams’ REINFORCE

• v(s) is a baseline, added to reduce the variance of
policy gradient estimation

• zero in the first pass, v_θ in the second pass

• Opponents are randomly sampled from old parameters

�⇢ =

↵

n

nX

i=1

T iX

t=1

@ log p⇢(ait|sit)
@⇢

(zit � v(sit))

Value network
• v_θ

• Training a value network = policy evaluation e.g. TD(λ)

• Given a policy p_ρ, compute v^{p_ρ}(s) = expected return from s

• Assume both players follow p_ρ

• We can use Monte-Carlo estimation by repeating simply following p_ρ and
observing a return

• They observed that training on every position in a game lead to
overfitting because they are strongly correlated

• So, they created a new dataset by sampling only one state from each
game

Dataset creation
• Repeat 30M times:

• Start from an empty board s_1

• Follow p_σ at s_1,…, s_{U-1}, U ~ unif(1,450)

• Select a move uniformly at random at s_U

• From s_{U+1}, follow p_ρ till the end and we can observe a return r

• Add (s_{U+1}, r) to the dataset

• Now we have 30M i.i.d. datasets for training a value function by
minimizing squared errors

�� =
↵

m

mX

k=1

(zk � v✓(s
k))

@v✓(sk)

@✓

Why not TD learning?
• They don’t mention it

• Monte-Carlo estimation (=TD(1)) has no bias
but high variance

• TD learning (=TD(λ) with λ<1) has low
variance but some bias

• Maybe they found this bias problematic

Why not Actor-Critic?

• They don’t mention it either :(

• Actor-Critic can simultaneously learn p(a|s)
and v(s), v(s) helping training of p(a|s)

• Is it partly because v(s) is difficult to learn
compared to p(a|s)?

Monte-Carlo Tree Search

• Nodes and/or edges in a search tree hold statistics about how good they are

• Statistics are updated by backpropagating returns of simulations, so-called
rollouts

• The search tree grows so that it can search promising portion of the state space
more deeply

APV-MCTS
• APV stands for asynchronous policy and value

• Each node in a search tree contains edges (s,a) for all legal actions

• Each edge stores a set of statistics

• P(s,a): prior probability (<- p_σ(s,a))

• N_v(s,a): number of calls of v_θ below this edge

• W_v(s,a): sum of returns of v_θ below this edge

• N_r(s,a): number of rollouts below this edge

• W_r(s,a): sum of returns of rollouts below this edge

• Q(s,a): Q(s, a) = (1� �)
Wv(s, a)

Nv(s, a)
+ �

Wr(s, a)

Nr(s, a)

Selection
• Descend from root to leaf following:

• Assign virtual loss n_vl to the statistics of selected edges so that they are not
favored in other threads’ selection phases

• N_r(s,a) += n_vl, W_r(s,a) -= n_vl

• Similar but different from UCT, which is guaranteed to converge to optimal
values

argmaxaQ(s, a) + u(s, a)

u(s, a) = cpuctP (s, a)

pP
b Nr(s, a)

1 +Nr(s, a)

uuct(s, a) = cuct

p
log

P
b Nr(s, a)

Nr(s, a)

Expansion

• If a leaf edge’s N_r(s,a) exceeds a certain threshold, add a
new node

• N_r, W_r, N_v, W_v of its edges are all initialized with 0

• P(s,a) is initialized with outputs of SL policy network p_σ

• They SL works better than RL here

Evaluation

• If the leaf node’s position s_L is not yet
evaluated by v_θ, added to a queue so that it
will be evaluated by v_θ asynchronously

• Simulate from s_L following p_π and observe
a return r

Backup
• Update the statistics from leaf to root:

• N_r(s,a) += 1

• W_r(s,a) += r

• If evaluation of v_θ is complete then another backup starts
asynchronously

• N_v(s,a) += 1

• W_r(s,a) += v_θ(s_L)

AlphaGo is strong

• As you know

• SOTA

• Beat Lee Sedol 4-1

Lessons
• Don’t fear high variance (if you have massive
computation resources)

• REINFORCE can scale surprisingly well

• Using every state in an episode for training
can lead to overfitting

• We still need lookahead search

